Learning to Play Donkey Kong Using Neural Networks and Reinforcement Learning
نویسندگان
چکیده
Neural networks and reinforcement learning have successfully been applied to various games, such as Ms. Pacman and Go. We combine multilayer perceptrons and a class of reinforcement learning algorithms known as actor-critic to learn to play the arcade classic Donkey Kong. Two neural networks are used in this study: the actor and the critic. The actor learns to select the best action given the game state; the critic tries to learn the value of being in a certain state. First, a base game-playing performance is obtained by learning from demonstration, where data is obtained from human players. After this off-line training phase we further improve the base performance using feedback from the critic. The critic gives feedback by comparing the value of the state before and after taking the action. Results show that an agent pre-trained on demonstration data is able to achieve a good baseline performance. Applying actor-critic methods, however, does usually not improve performance, in many cases even decreases it. Possible reasons include the game not fully being Markovian and other issues.
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کامل